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Preface

The origin of this little book dates back to 1994, when I studied Pierre
Samuel’s Projective Geometry (see [Samuel]). The wonderful develop-
ment of the affine and projective planes from very simple axioms, leading
to profound results, appealed to me greatly. But the extension to higher
dimensions was less satisfactory to my taste, and that stimulated me to
go into more detail. Shortly afterwards I found in [Jacobson] a chapter
on lattice theory, which appeared very suitable for describing projec-
tive spaces independent of dimension. This led to a first - unpublished
- article in 1995. But one very awkward axiom was that of Dedekind:
complicated and not at all intuitively acceptable in ordinary geometry.
It left me very uneasy.
Some five years later I took up this project again, mainly to find al-
ternatives for this Dedekind axiom. It appeared that, indeed, it was
possible to replace it by two much more simple and intuitive axioms,
and I rewrote the article for use in a small circle of colleagues. In 2006 I
gave a lecture on the fundamentals of geometry, and in 2008 one on the
equivalence of the theorem of Pappos with the commutativity of mul-
tiplication of scalars (see section 4.6). By then the article had grown
beyond the size fit for a magazine. So in the summer of 2009 I decided
to work out several details and make a little book of it.

And here it is. Apart from the great mathematicians who inspired me -
like Samuel and Artin - I am indebted to many people who stimulated
or helped me. First of all my wife, who tolerated my working on maths
while eating her bread. Secondly my life-long friend Ruud Pellikaan,
who led me out of confusion more than once, with his broad and pro-
found knowledge. And thirdly the colleagues and students who patiently
endured the sometimes alien world I tried to take them into.
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This book is written for mathematicians, philosophers and theoretical
physicists who want a sound fundament for geometry. It hardly contains
any new facts. But it does give several new proofs and, above all, an
intuitive way of developing the impressive cathedral of geometry from
simple axioms that are immediately accepted as true in a real geometrical
space. Now, if you glance through this book you might think that it
is more about abstract algebra than about geometry. This is because
geometry is in its essence algebra. But throughout we have tried to keep
in touch with geometrical content. However, in order to make sure that
there are no gaps in the proofs one has to ascend to the algebraic level
of relations between geometrical objects.

There is another reason why this work may be of interest, apart from
presenting yet another axiom system. In a time when geometry is re-
duced to calculus, if not completely absent, it is of utmost importance to
keep the field alive. Even more so since in physics and computer science
the interest in Clifford/Grassmann algebra is growing and old concepts
like (linear) complexes are reappearing on the scene. So I also hope that
this book modestly contributes to a better understanding and increased
appreciation of true geometry.

Rotterdam, Autumn 2009
Lou de Boer
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Chapter 1

Preliminaries

1.1 Prerequisites

The reader is assumed to be familiar with the basic facts of modern
geometry, especially projective geometry, and, above all, with the gist
of axiomatizing. In [Coxeter] one can find everything about geometry
that is needed for this book, and much more. In addition she/he should
have a basic knowledge of algebra and linear algebra: any undergraduate
courses should be sufficient. It is not necessary to know about lattices,
but in [Jacobson] you can find the most important things.

1.2 What is Geometry?

In ancient times, geometry was the study of physical space. It was used
to predict the positions of the stars, to demarcate pieces of land, and
to build houses and temples. It was concerned with points, lines, planes
etc.

In Euclid’s time it was converted from an experimental science into a
deductive one, but there was no clear distinction between geometrical
and physical space.

In the 19th century other kinds of geometry, viz. hyperbolic and elliptic
ones, were discovered, and from then on a distinction had to be made
between real physical space and all kinds of geometrical spaces. But still
geometry was about points, lines and planes, and these had geometrical
contents that were well agreed upon.

In the 20th century, with the rise of formal mathematics, these contents
lost their importance. Though they still play an essential role in the de-
velopment of mathematical consciousness of the individual, in academic
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2 CHAPTER 1. PRELIMINARIES

circles one cherishes the abstractness of mathematical concepts and the
freedom to substitute virtually everything into every ‘undefined concept’:
e.g. we like to speak of a function being a point in a function space, or
a complex number being a point in the Gauss plane.

Yet - certainly in physics - points, lines and planes still have their intu-
itive meaning. Thus, today we have to distinguish three kinds of space:

• physical space

• concrete geometrical spaces, in which points, lines and planes have
the intuitive meaning of former times

• abstract mathematical spaces that are defined formally from cer-
tain axioms, and in which points need not be geometrical objects.

In what follows we will be concerned mostly with concrete geometrical
spaces, though we will try to construct them with formal methods. And,
of course, an important question still is: which concrete geometrical space
best fits our physical space?

1.3 The Fundamentals of Geometry

In any formal mathematical theory one starts with undefined concepts
and axioms. Then one develops new concepts and proves new facts.

It is hardly necessary to mention that before one has such an ideal theory,
a long time of struggle may have passed, with vague concepts and wrong
statements. As stated above, in Euclid’s time the facts of geometry were
converted into a deductive system. And at the end of the 19th century
the whole mathematical landscape, including all kinds of geometry, was
axiomized. So, founding a theory on clear concepts and axioms, is not
done before the outlines of the theory have been developed to a certain
extent.

In this treatise we will try to give a new system of axioms from which
geometry can be developed. The reason why we think this is appropriate
is formulated in section 1.6.



1.4. ELEMENTS 3

1.4 Elements

Before starting our theory, it is worthwhile to reflect on the nature of our
elements: of points, lines and planes. A point is meant to be a ‘locater’,
something that indicates a location in space. It has no size: no length,
nor area, nor volume.

From ‘point’ one goes on to ‘line’: the (straight) line has infinite length,
but no other sizes. It is infinitely thin. A good alternative to this is
to look at the line as a border. In figure 1.1 there are two contrasting
colours, black and white. A line is considered to be the border between
these colours. As such the line is invisible, but very easy to imagine. It
has a mental content, but no material one.

Figure 1.1: the line as a border

From this concept of line it is easy to get to ‘point’ and ‘plane’: as soon
as two lines in space meet, there is a point as well as a plane.

The plane itself can also be thought of as the border between the water
of a perfectly still lake and the air above it; that is, if, for the moment,
we forget about molecules and stuff like that.

Looking back at our ‘definition’ of ‘line’, we note that we needed a plane.
Without our two colours in the planar figure 1.1 it would be impossible
to give this nice example. In Chapter 4 we will meet a very profound
phenomenon (the construction of the vector space) that will make it
clear that a geometrical line cannot exist on its own, but needs a plane.

Also we will see, in section 2.9, that the plane can hardly exist without
a third dimension, to prove the Desargues statement.

So, in our treatise the ‘dimension’ of our spaces will be 3 or more, or at
least we will suppose that our lines and planes can be embedded in a
3-dimensional space.
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1.5 Projective Geometry

Geometry is about points, lines, curves, planes, surfaces, distances, an-
gles... . But also about incidence, and incidence is more fundamental
than distance or angle. Projective Geometry is about incidence, and not
so much about distance and angle. Elliptic, Parabolic (=Euclidean) and
Hyperbolic Geometry can all be derived from Projective Geometry by
adding a suitable metric to (a subset of) it. In that sense Projective Ge-
ometry is more fundamental than the other geometries. So, if we want
to investigate the fundamentals of Geometry, it is only natural to do this
firstly and mainly on Projective Geometry.

1.6 Axiom systems

From a formal mathematical point of view, given two sets of consistent
axioms, A and B, that are, in addition, equivalent, there is no reason to
prefer one over the other. In fact the word ‘prefer’ has no formal mathe-
matical meaning. Yet one can prefer A over B for didactical reasons, or
because A is more beautiful than B, or A has fewer or simpler axioms
than B, or because A is more ‘intuitive’ than B.

There are several ways to develop projective geometry. We list a few.

1. First we have the historical way in which it was ‘discovered’, starting
from Euclidean geometry and adding elements at infinity; see e.g. [Reye]
2. Vortrag. Duality is not apparent and the underlying field is R.
By the way, every finite dimensional vector space over any field can be
transformed into a projective space, by adding elements at infinity.

2. A second way - restricted mostly but not necessarily to the two and
three dimensional cases - starts from points and lines (and planes) and
incidence, the concept of dimension being immediate; see e.g. [Coxeter].
One could call it the geometrical approach. Duality is - in general -
built in and the field of scalars is R.

3. Since we know a great deal about fields and vector spaces, the most
comfortable method for developing projective geometry is without doubt
to start from a finite dimensional vector space and to identify dependent
vectors; see e.g. [Samuel]. One could call it the numeric approach,
since from the very beginning all points are fully determined by tuples
of numbers. Working with lines, planes etc. is, however, much less easy.
Duality is not immediate, but can be achieved via the dual vector space,
i.e. with linear functions. Any field is allowed.

4. Another one, see [Aigner] page 55, starts with a set of points and an
elected collection of subsets, the lines. A higher dimensional subspace
is constructed inductively from a lower dimensional one and one point
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outside it. This could be called the set-theoretical approach. Duality
is not apparent but the underlying field can be chosen arbitrarily.

5. In [Stoss] real 3-dimensional projective geometry is developed in a
very elegant way, starting from ‘line’ and ‘touch’ (Treffen) only. Duality
is built in, the field is R.

6. A sixth one, which is presented here, starts from lattice-theory, and
hence is essentially algebraic. Our affinity towards it is because

• the few and simple axioms of lattice theory are immediately ac-
cepted to be true in our ‘real projective’ world; in that sense this
approach appears to be highly phenomenological or intuitive

• it is dimension-independent

• here - like in several other courses, but by no means all - our
projective space is not considered to be a set of points only; treating
lines and planes as objects on their own rather than as point-sets
has the disadvantage that the results of set-theory cannot be used
that much, but duality becomes explicit and clear

• the somewhat wide concept of ‘incidence’ is replaced by the more
narrow one of ‘containing’, thus turning our space into a partially
ordered set

• the rather tiring and cumbersome axioms of separation ([Coxeter]
Chapter II) become easy theorems after choosing R as our ground
field (this is not presented in this book, however)

• in many textbooks on Projective Geometry duality is formulated
in terms of point, line, plane and incidence; the dual counterpart
of the whole space - the empty set - I found nowhere explicitly
mentioned, though they form perfect initial (smallest) and terminal
(biggest) elements, that is zero and unity; in lattice theory they
are basic dual concepts

• expressions like ‘the plane determined by a line l and a point p’ or
‘the line through the points p and q’ are reformulated in terms of
join: l ∨ p resp. p ∨ q, thus covering all dimensions; expressions
like ‘the intersection of lines l and m’ or ‘the meeting point of line
l and plane α’ are reformulated by meet : l ∧m resp. l ∧ α; it has
the additional advantage that one can define polynomials and with
them degree of freedom as an alternative for the awkward concept
of ∞n; which - by the way - is not presented in this treatise

• finally, the classical geometries, like the point range, the flat pencil,
point-geometry etc., appear in a uniform way as intervals.
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1.7 The structure of this book

In the next chapter we will present our Axiom System. The main ques-
tion then is to prove that our spaces are projective spaces in the sense of
one of the other systems. That requires the concept of isomorphic spaces.
Therefore, in Chapter 3 we will be concerned with maps between pro-
jective spaces. In Chapter 4 we will show that indeed our system is
equivalent to the other ones by proving that our space is isomorphic to
the lattice of subspaces of a vector space.

As usual Z, Q and R denote the sets of integers, rationals and reals
respectively; Fp is the finite field with p elements. A small circle, ◦,
denotes the composition of maps; a dagger, †, means a contradiction;
a ‘diamond’, �, means the end of an example or exercise or proof, or
sometimes ‘trivial proof’.

‘Skew field’ is the same as ‘division ring’, meaning a ring in which the
non-zero elements form a multiplicative group. A field is a division ring
in which multiplication is commutative. Throughout this book ‘vector
space’ is meant to include modules over skew fields. In particular ‘vector
space’ means ‘left vector space’ if the skew field is not commutative.



Chapter 2

The Axiom System

The first part of this chapter, sections 2.1 to 2.4 is a paraphrase of Jacob-
son’s lattice theory (see [Jacobson] Chapter VII) applied to geometry.
In sections 2.7 to 2.9 we add axioms to turn these lattices into projective
spaces.

2.1 Size

As stated before, geometry is about points, lines and planes. So the first
thing to notice is the existence of different types of elements. These types
are finite in number, but not unrelated like ‘apple’ and ‘democracy’: we
think of a point as being ‘smaller’ than a line, which in turn is smaller
than a plane. This means that we can order the types, i.e. we can
associate integers to them. Points are agreed to have size or dimension
0, lines 1 and so on.

So, in developing our formal theory we will start with

• a set S, our space,

• an integer n ≥ 3 and

• a surjective function dimension

dim : S → {−1, 0, . . . n− 1, n}

Note that for every integer k between −1 and n there is at least one
element x ∈ S with dim(x) = k.

The condition n ≥ 3 needs some explanation. First, n ≥ 1 guarantees
that S is not empty, or rather, as will be shown, that it has at least

7



8 CHAPTER 2. THE AXIOM SYSTEM

one line containing at least one point. As a consequence, we deliberately
exclude 0-dimensional spaces. The reason for this you will find on page
25 in the footnote.
By taking n ≥ 2 we allow the constructions in Chapter 4, without which
we are left without any number system. If n = 2 we would need the not
very intuitive proposition of Desargues (2.9.8) as an axiom. See [Samuel]
1.4 for a description of a non-desarguian plane. You will agree that this
weird example does not satisfy our common image of geometry. Of course
we will not exclude 1- and 2-dimensional spaces, but we will assume that
these can be embedded in a 3-dimensional one. By experience we know
we live in a 3-dimensional world, so this is certainly not contrary to our
intuition.

Definition 2.1.1 The number n is called the dimension of S.

Since we want to develop our theory not only for the projective plane
and space, but also, for example, for the 5-dimensional space of linear
complexes, we do not restrict to n = 3. However, our geometrical ex-
amples are taken from projective 3-space, unless explicitly mentioned
otherwise.

Definition 2.1.2 For x ∈ S:
if dim(x) = 0 then x is called a point,
if dim(x) = 1 it is called a line, and
if dim(x) = 2 it is called a plane.
In general, an element x is called a k-blade or linear k-manifold if
dim(x) = k.

In section 2.3 we will see what dim(x) = −1 means.

Instead of our function ‘dim’ one could take the function

p+ dim : S → {p− 1, p, . . . n+ p− 1, n+ p}

for any integer p. In the literature one particularly finds the function
rank= 1 + dim.

In section 2.5 we will focus on the symmetry of our space which is known
as the principle of duality . To establish this symmetry from the very
beginning, we introduce the - not very useful - concept of ‘co-dimension’.

Definition 2.1.3 The co-dimension of an element x ∈ S is the number

codim(x) = n− 1− dim(x)

Note that
codim : S → {−1, . . . n}

and that it is surjective.
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Definition 2.1.4 For x ∈ S:
if codim(x) = 0 then x is called a dual point or a hyperplane,
if codim(x) = 1 it is called a dual line,
if codim(x) = 2 it is called a dual plane.

Corollary 2.1.5 Dual points have dimension n−1, dual lines n−2 and
dual planes n− 3. �

2.2 Order

The next thing to observe is that the line is not only bigger than the
point, but it also contains points, and a plane contains lines and points.
A point can be in - or, if you like: on - a line or plane, and a line can lie
in a plane. We apparently have a binary relation I on S that we want
to satisfy the following axiom.

Axiom 2.2.1 of order
There is a binary relation I ⊂ S×S which for every x, y, z ∈ S satisfies:

(x, x) ∈ I, i.e. the relation is reflexive

( (x, y) ∈ I and (y, x) ∈ I ) ⇒ x = y,
i.e. the relation is anti-symmetric

( (x, y) ∈ I and (y, z) ∈ I ) ⇒ (x, z) ∈ I,
i.e. the relation is transitive

This axiom states that our space S is a partially ordered set.

Definition 2.2.2 The following sentences all mean (x, y) ∈ I:

x is in y, or x is contained in y, notation x � y

y contains x, or y passes/goes through1 x, notation y � x

Proposition 2.2.3 For every x, y ∈ S:

(x � y and y � x) ⇔ x = y

Proof. ⇒ is the axiom. Now if x = y then from reflexivity x � y and
y � x follow. �
If two elements are not equal we use the following symbol.

1In a similar way we say that a road passes/goes through some city. This suggests
a movement, but in fact it is a variable point X ‘moving’ on l that passes through P .
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Definition 2.2.4 For every x, y ∈ S:

x ≺ y and y � x both mean: (x � y and x 6= y)

The elements x and y are called comparable if x � y or y � x. In the real
numbers we have either x < y or y > x or x = y, for any numbers x and
y, that is: all numbers are comparable. The reals are linearly ordered .
In our space S two elements may be uncomparable: if P is a point not
on a line l, neither P ≺ l, nor P � l, nor P = l holds. Our space is not
linearly ordered.

Definition 2.2.5 For every x, y ∈ S:

x 6� y and y 6� x both mean: (x, y) 6∈ I

Similarly x 6≺ y and y 6� x are the negations of x ≺ y.

Note that x 6≺ y holds if x = y. But we will avoid using 6≺ and 6�.

For future use we have the following trivial property.

Proposition 2.2.6 If for every x ∈ S holds (x � a ⇒ x � b) then
a � b.

Proof. Take x = a. �

The ordering relation is stronger than dimension. In fact we want:

Axiom 2.2.7 of monotone dimension
For every x, y ∈ S we have:

x ≺ y ⇒ dim(x) < dim(y)

i.e. dim is strictly monotone.

Clearly the function codim is strictly monotone too, but ‘descending’.

A trivial but useful application is the following

Proposition 2.2.8 If a � b and dim(a) = dim(b) then a = b.

Proof. a � b means a ≺ b or a = b. In the former case we have
dim(a) < dim(b) †, which leaves the latter. �
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2.3 Borders

We generally accept that the points and lines of 2-dimensional geometry
all lie in a plane, and that the points, lines and planes of 3-dimensional
geometry all lie in space. That means, we accept the existence of a
biggest element Pn that contains all elements of S. Less usual, but
equally necessary for a symmetric construction of our theory, is the ex-
istence of a smallest element, viz. the empty set ∅, that is contained in
every element of S.

Axiom 2.3.1 of border
There is an element 0 such that for every x ∈ S : 0 � x. There is an
element 1 such that for every x ∈ S : 1 � x.

We will use 0 and 1 mostly in our general theory, and ∅ and Pn in
geometric applications. However, as soon as we consider subspaces or
intervals, e.g. the geometry of a point, 0 and 1 will get different inter-
pretations, see section 2.6.

Proposition 2.3.2 The element 0 is unique, i.e. if there is a p ∈ S
such that p � x for every x ∈ S, then p = 0.

Proof. Suppose p � x for every x ∈ S, then in particular p � 0. But
by the axiom of border (2.3.1) also 0 � p.
Now by axiom 2.2.1 of anti-symmetry p = 0 . �

Proposition 2.3.3 The element 1 is unique. �

Proposition 2.3.4 For every x ∈ S:

dim(x) = −1⇔ x = 0

dim(x) = n ⇔ x = 1

where n is again the maximum value of the dimension function, see
section 2.1.

Proof. of the first proposition. Suppose dim(x) = −1. Since 0 � x,
either 0 = x or 0 ≺ x. In the latter case we have dim(0) < dim(x) =
−1 †; which leaves x = 0. Conversely, suppose x = 0. Then for every
y 6= 0 we have 0 ≺ y, hence dim(0) < dim(y). Hence dim(0) is the
smallest element of dim(S), viz. -1. Second proposition analogous. �

Corollary 2.3.5 0 6= 1
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2.4 Meet and join

The basic techniques of geometry are meet and join. The join of two
different points is a line, and the meet of a line and a plane is the
meeting point, unless the plane contains the line. What exactly do we
mean by meet and join?

Definition 2.4.1 An element p ∈ S is called an upper bound for a
subset V of S if p contains each element of V : x ∈ V ⇒ x � p.
An element p ∈ S is called a lower bound for V if it is contained in each
element of V : x ∈ V ⇒ p � x.
An element p ∈ S is called a least upper bound for a subset V of S if
it is an upper bound for V and if it is contained in every other upper
bound for V .
An element p ∈ S is called a greatest lower bound for a subset V of S if
it is a lower bound for V and if it contains every other lower bound for
V .

Note. Since p � p the word ‘other’ could be omitted.

Example. Let l be the meeting line of the planes α and β. Every point
on l is a lower bound of the set {α, β} and l is its greatest lower bound.
�

Proposition 2.4.2 Each subset V of S has at most one least upper
bound and at most one greatest lower bound.

Proof. Let a and b both be least upper bounds for V . Then a � b and
b � a, so a = b. Analogously for the greatest lower bound. �

It is clear from axiom 2.3.1 that every subset of S has an upper and
a lower bound. A least upper bound and greatest lower bound do not
always exist in partially ordered sets. This can be seen from figure 2.1:
an arrow in this and future figures means �, so e.g. a � q and - from
transitivity - a � 1.

Figure 2.1: Non-unique bounds
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In geometry this would mean, for instance, that two different lines can
have two different common points. To exclude these situations we need
the following axiom.

Axiom 2.4.3 Lattice axiom
Each pair of elements of S has a least upper bound and a greatest lower

bound.

This axiom together with the axiom of order, 2.2.1, makes our space a
lattice. It is a very strong axiom indeed. It implies, for instance, that
two different points determine one line.

Definition 2.4.4 The least upper bound of x and y is called their join,
denoted by x∨ y. The greatest lower bound is called their meet, denoted
by x ∧ y.

Proposition 2.4.5 For every a, x ∈ S: a ∧ x � a � a ∨ x.

Proof. Immediate from the definition of greatest lower bound and least
upper bound. �

Proposition 2.4.6 For every a, b, x ∈ S: (x � a and x � b) ⇒ x �
a ∧ b, and also (x � a and x � b) ⇒ x � (a ∨ b).

Proof. Immediate from the definition of greatest lower bound and least
upper bound. �

Proposition 2.4.7 Meet and join are commutative and associative, i.e.
for every a, b, c ∈ S:

a ∧ b = b ∧ a a ∨ b = b ∨ a
(a ∧ b) ∧ c = a ∧ (b ∧ c) (a ∨ b) ∨ c = a ∨ (b ∨ c)

Proof. of (a ∧ b) ∧ c = a ∧ (b ∧ c).
((a∧b)∧c) � (a∧b) � a, and ((a∧b)∧c) � (a∧b) � b, and ((a∧b)∧c) � c,
so (a∧b)∧c is lower bound of {a, b, c}, hence of a, b∧c. So ((a∧b)∧c) �
(a ∧ (b ∧ c)). Similar ((a ∧ b) ∧ c) � (a ∧ (b ∧ c)). �
From this it follows that we can speak of the meet and join of any finite
subset of S.

Proposition 2.4.8 For every a ∈ S:

0 ∧ a = 0 0 ∨ a = a
1 ∧ a = a 1 ∨ a = 1 �
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Proposition 2.4.9 For every a ∈ S : a ∧ a = a ∨ a = a. �

That is: every element is idempotent with respect to both operations.

Proposition 2.4.10 For every a, x ∈ S:

(a ∨ x) ∧ a = a and (a ∧ x) ∨ a = a

Proof. a � a and a � a ∨ x, hence a � (a ∧ (a ∨ x)). Conversely
(a ∧ y) � a for all y, so - taking y = a ∨ x - also (a ∧ (a ∨ x)) � a. �

Proposition 2.4.11 For every a, b ∈ S: a∧b = a ⇔ a � b ⇔ a∨b =
b. �

Proposition 2.4.12 For every a, b, x ∈ S:

if a � b then: (a ∧ x � b ∧ x) and (a ∨ x � b ∨ x)

i.e. meet and join are monotone.

Proof. a ∧ x � a � b and a ∧ x � x imply a ∧ x � b ∧ x. �

Corollary 2.4.13

(a � b and b ∧ x = 0) =⇒ a ∧ x = 0

and
(a � b and a ∨ x = 1) =⇒ b ∨ x = 1 �

We close this section with a trivial but useful fact.

Proposition 2.4.14 If p � a but p 6� a ∧ b then p 6� b. And dually: if
a � q but a ∨ b 6� q then b 6� q.

Proof. Logical consequence of proposition 2.4.6. �

2.5 Duality

Note the duality between meet and join. The same duality exists between
≺ and �, between � and �, and between 0 and 1. Suppose P is a
statement involving variables over S, and some or all of the algebraic
symbols ∨ ∧ ≺ � � � dim codim 0 1, and possibly brackets, logical
symbols and numbers, but nothing else. The dual P ∗ of P is obtained
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by replacing each of those algebraic symbols of P by its dual. Then P ∗

is true if and only if P is true.

This meta theorem follows from the symmetric way we have constructed
our theory so far.

Instead of working with the relation I in section 2.1, we could have taken
the relation J defined by (a, b) ∈ J ⇔ (b, a) ∈ I. It will be clear that
this leads to a completely similar structure, in which the order relations
are reversed, and meet and join interchanged. This space will be called
the dual space S∗ of S.
In S∗ the smallest element is 1 and the biggest 0.

2.6 Intervals

A well known fact from projective geometry is that a flat pencil of lines
behaves very much the same as a range of points on a line, or as a pencil
of planes in space. Likewise, a bundle of lines and planes is ‘isomorphic’
to the projective plane of points and lines. To formalize these concepts
we need the following definition.

Definition 2.6.1 The open interval 〈a, b〉 is the set of elements ‘be-
tween’ a and b:

〈a, b〉 = {x ∈ S|a ≺ x ≺ b}

The closed interval [a, b] is defined as:

[a, b] = {x ∈ S|a � x � b}

So if P is a point in a plane α, the interval 〈P, α〉 is the flat pencil of
lines through P in α. 〈∅, l〉 is the range of points on line l, 〈l,P3〉 is the
pencil of planes through l.

We leave the definition of a half-open interval to the reader.

Proposition 2.6.2 [0,1] = S. �

Proposition 2.6.3 If a is not contained in b, then [a, b] is empty. �

Proposition 2.6.4 Suppose a ≺ b and dim(b) > dim(a) + 3. Define
dim′(x) = dim(x)− dim(a)− 1. Then [a, b] satisfies all previous axioms
with dim′ instead of dim and with a as smallest and b as biggest element.

The proof is left as an easy exercise for the reader.
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Definition 2.6.5 The number

dim([a, b]) = dim(b)− dim(a)− 1 = dim′(b)

is called the dimension of the interval [a, b], provided that a ≺ b. If the
interval is empty or if a = b, its dimension is not defined.

This is in accordance with definition 2.1.1.

Definition 2.6.6 Closed intervals of dimension 1 or higher are called
subspaces of S.

Note that we allow subspaces to have dimension 1 or 2, whereas S has
to be of dimension 3 or more. The reason for this will become clear in
the sequel.

Note also that if a � b, [a, b]∗ is the dual space of [a, b]. This has hardly
any meaning if the dimension of the interval is 1.

2.7 Distributivity

Meet and join have a certain similarity with the AND and OR operators
in predicate calculus. However, there is a big difference too: distributivity
does not hold in each lattice. In general a ∧ (b ∨ c) 6= (a ∧ b) ∨ (a ∧ c)
and a ∨ (b ∧ c) 6= (a ∨ b) ∧ (a ∨ c).
Example. Let a and d be different lines with common point E, and B and
C different points on d but not on a, see figure 2.2. Then a∧ (B ∨C) =
a ∧ d = E and (a ∧B) ∨ (a ∧C) = 0 ∨ 0 = 0. Also a ∨ (B ∧C) = a and
(a ∨B) ∧ (a ∨ C) = a ∨ d, being a plane. �

Figure 2.2: No distributivity

We do, however, have a weaker property.

Proposition 2.7.1 For every a, b, c ∈ S:

(a ∧ b) ∨ (a ∧ c) � (a ∧ (b ∨ c))
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and
(a ∨ b) ∧ (a ∨ c) � a ∨ (b ∧ c)

Proof. b � b ∨ c so (a ∧ b) � (a ∧ (b ∨ c)); similar a ∧ c � a ∧ (b ∨ c). �
As a direct consequence of this proposition we have the following one, a
bit odd, at first sight, yet very important.

Figure 2.3: proposition 2.7.2

Proposition 2.7.2 For every a � b and arbitrary x: a ∨ (b ∧ x) �
b ∧ (a ∨ x).

Proof. Put p = a ∨ (b ∧ x) and q = b ∧ (a ∨ x), see figure 2.3. From
proposition 2.7.1 we have p = a∨(b∧x) � (a∨b)∧(a∨x) = b∧(a∨x) = q.
�
In many lattices, including projective spaces, we have the stronger a ∨
(b ∧ x) = b ∧ (a ∨ x) for a � b. But that does not hold in every lattice.
As an example, consider the lattice from figure 2.4. In this lattice we
have u ≺ v and p = u∨ (v ∧ s) = u and q = v ∧ (u∨ s) = v, hence p ≺ q.
Note that the lattice of figure 2.4 is part of the lattice of figure 2.3.

Figure 2.4: A non-modular lattice

Lattices that do satisfy the property p = q are called modular or Dedekind .

In figure 2.5 we indicate that this property may hold in real 3-dimensional
space: A is a point in a plane β and x a line that meets β in P 6= A.
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Figure 2.5: Modularity in geometry

Then A ∨ (β ∧ x) = β ∧ (A ∨ x) = l.

To turn our space into a modular lattice, we need, however, the addi-
tional axioms of the next section.

2.8 The dimension theorem

Example. In real projective 3-space, let α be a plane, l a line that meets
the plane in a point P . Then:

dim(α) + dim(l) = 2 + 1 = 3

dim(α ∧ l) + dim(α ∨ l) = dim(P ) + dim(P3) = 0 + 3 = 3 �

The reader is invited to verify that in real projective space for all a, b
holds:

dim(a) + dim(b) = dim(a ∧ b) + dim(a ∨ b)

To prove this central theorem in our theory, two more axioms are needed.
The first requires the existence of ‘enough’ points to construct arbitrary
elements of our space. The second guarantees that the space has suffi-
cient symmetry: joining any line with a point not on it, will invariably
give a plane, etc., see figure 2.6.

Axiom 2.8.1 of sufficient points/hyperplanes
For every pair a, b of elements of S for which a ≺ b, there exists a point
x, i.e. dim(x) = 0, such that

• x 6� a

• x � b
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Figure 2.6: Composition

And dually, after translation: for every pair a, b of elements of S for
which a ≺ b, there exists a hyperplane y, i.e. dim(y) = n− 1, such that

• a � y

• b 6� y

Axiom 2.8.2 of composition
If x is a point and a any element not containing x, then dim(a ∨ x) =

dim(a) + 1. And dually: if y is a hyperplane and b any element not in
y, then dim(b ∧ y) = dim(b)− 1.

As an immediate consequence of the first axiom we have the following
fundamental property; compare proposition 2.2.6.

Proposition 2.8.3 If for every point x holds (x � a ⇒ x � b), then
a � b. And dually: if for every hyperplane y holds (b � y ⇒ a � y),
then a � b.

Proof. (First statement only.) Suppose a ∧ b ≺ a, then by the previous
axiom there must be a point p such that p � a and p 6� a ∧ b. By
hypothesis we then have p � b, hence p � a ∧ b †. That means our
supposition is false, i.e. a ∧ b = a, i.e. a � b. �

Definition 2.8.4 Let i, k be integers, 0 < i ≤ k.
A tuple (a0, a1 . . . ak) is called a chain of length k if for each i : ai−1 � ai.
The chain is irredundant if ai−1 ≺ ai for all i, otherwise it is redundant.
The chain is called complete if for each x ∈ S and for each i:

ai−1 � x � ai ⇒ (ai−1 = x or x = ai)

A complete chain (a0, a1 . . . ak) is said to connect a0 and ak.
A composition chain is a complete and irredundant chain.
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Examples. Let P,Q be different points on a line l, and this line in a
plane α. Then

• (P,Q, α) is not a chain, neither are (l, P, α) and (Q, ∅).

• (P, P, α) is a chain of length 2, neither irredundant nor complete

• (∅, Q, l, l) is a complete and redundant chain of length 3 connecting
∅ and l

• (∅, l,P3) is an irredundant but not complete chain of length 2

• (P, l, α,P3) is a composition chain of length 3 connecting P and
P3.�

Proposition 2.8.5 If (a0, . . . ak) is a composition chain, then dim(ai) =
dim(ai−1) + 1 for each i = 1 . . . k.

Proof. If (a0, . . . ak) is a composition chain, ai−1 ≺ ai. Then from
axiom 2.8.1 we know that there is a point xi such that xi 6� ai−1 and
xi ≺ ai. Let yi = ai−1 ∨ xi, then ai−1 ≺ yi � ai. Because the chain
is complete, yi = ai. Furthermore, according to axiom 2.8.2: dim(ai) =
dim(yi) = dim(ai−1) + 1. �

Proposition 2.8.6 If a ≺ b there exists a composition chain connecting
them. Any composition chain connecting a and b has length dim(b) −
dim(a).

Proof. From axiom 2.8.1 we know that there is a point x1 � b, x1 6� a.
Let y1 = a∨ x1. Then a = y0 ≺ y1 � b. If y1 = b we have a composition
chain, of length 1. Note that by axiom 2.8.2 dim(y0) + 1 = dim(y1).
If y1 6= b we can repeat this process. Suppose we have constructed
composition chain (y0, . . . yk−1) with yk−1 ≺ b. Then there must be
a point xk � b, xk 6� yk−1. Define yk = yk−1 ∨ xk. Now we have
dim(yk−1) + 1 = dim(yk), hence dim(a) + k = dim(yk). As soon as
dim(yk) = dim(b) the process stops, and yk = b.
Now let (a = y0, . . . yk = b) and (a = z0, . . . zl = b) be composition chains
connecting a and b. Iterating proposition 2.8.5 we find that dim(b) =
dim(yk) = dim(y0) + k. In the same way we find dim(b) = dim(zk) =
dim(z0) + l, whence k = l = dim(b)− dim(a). �

Proposition 2.8.7 Let b 6� a, a ∧ b ≺ z � b and

dim(z) = dim(a ∧ b) + 1

Then (a ∨ z) ∧ b = z.
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Figure 2.7: Proposition 2.8.7

Proof. From the hypothesis it follows by the last two axioms that there
exists a point p such that p ≺ z, p 6� a ∧ b, z = (a ∧ b) ∨ p, see figure
2.7. Now, since p 6� a ∧ b and p ≺ z � b, p can’t be in a, see proposition
2.4.14. Also a∨z = a∨ (a∧b)∨p = a∨p, hence dim(a∨z) = dim(a)+1.
So a ≺ a ∨ z. Then there must exist a hyperplane q such that and
a � q, a ∨ z 6� q and dim(q ∧ (a ∨ z)) = dim(a ∨ z)− 1 = dim(a). Since
a � q and a � a∨z we have a � q∧(a∨z) so a = q∧(a∨z) = q∧(a∨p).
Next we meet a ∨ z with b. Put z′ = (a ∨ z) ∧ b. We have to prove that
z = z′. We know from 2.7.1 that z′ = b ∧ (a ∨ z) � (b ∧ a) ∨ (b ∧ z) = z.
From (a ∨ p) ∧ q = a follows

(a ∨ p) ∧ q ∧ b = a ∧ b

z′ ∧ q = a ∧ b

Is it possible that z′ � q? That would mean from the last equation:
z′ = a∧b. But that is not possible since a∧b ≺ z � z′. Now we can apply
our axiom 2.8.2 again: dim(z′) = dim(z′∧q)+1 = dim(a∧b)+1 = dim(z),
i.e. z = z′. �

Figure 2.8: Proposition 2.8.8
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Proposition 2.8.8 Let b 6� a, a ∧ b ≺ z � b. Then (a ∨ z) ∧ b = z.

Proof. Let k = dim(z) − dim(a ∧ b). For k = 1 we have the previ-
ous theorem. Now suppose the statement correct for k = m and sup-
pose dim(b) − dim(a ∧ b) > m. Take any composition chain (z0 =
a ∧ b, . . . , zm, z = zm+1, . . . zj = b. Then by assumption we have zm =
(a∨ zm)∧ b. Also a∨ b = (a∨ zm)∨ b. Hence we can apply the previous
theorem on the elements a ∨ zm, b and z, from which the statement for
k = m+ 1 follows. �
As a corollary we have our central dimension theorem.

Proposition 2.8.9 Dimension theorem
For any two elements a, b ∈ S:

dim(a) + dim(b) = dim(a ∧ b) + dim(a ∨ b)

Proof. In theorem 2.8.8 take z = b. Then a ∨ z = a ∨ b and the chains
(z0 = a ∧ b, . . . , zk = b) and (a = a ∨ z0, . . . , a ∨ zk = a ∨ b) have the
same length k. By definition the first chain is a composition chain, and
from the proof of theorem 2.8.8 follows immediately that the second
is a composition chain too. Now we have dim(a ∨ b) − dim(a) = k =
dim(b)− dim(a ∧ b), from which the dimension theorem follows. �
Now we are also in the position to prove that our space is modular.

Proposition 2.8.10 For every a, b, x ∈ S: a � b ⇒ a ∨ (b ∧ x) =
b ∧ (a ∨ x).

Proof. See figure 2.3. Put again p = a ∨ (b ∧ x) and q = b ∧ (a ∨ x).
If a � x one easily verifies that p = q = b ∧ x, and if x � b we have
p = q = a ∨ x.
So, suppose a 6� x 6� b. Then we have b ∧ x � p � b. From proposition
2.8.8 follows (p∨ x)∧ b = p or (a∨ (b∧ x)∨ x)∧ b = p or (a∨ x)∧ b = p
or a = p. �
This proof we owe to M. Aigner, see [Aigner], page 43.

2.9 Projective spaces

We will now proceed to the definition of a projective space. In order
to exclude too simple spaces, like the line with two and the plane with
three points2 we need the following axiom.

2These have no vector space structure over a field.
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Axiom 2.9.1 of cardinality
Every line has at least three points on it.
Dually: every dual line is contained in at least three dual points.

In our ‘real’ geometry we will deal with lines with infinitely many points,
see considerations in section 4.9. But at this stage such a restriction is
not necessary.

Figure 2.9: 1-dimensional intervals

Proposition 2.9.2 Let a ≺ c and dim(c) = 2 + dim(a). Then there are
at least three elements b1, b2, b3 with a ≺ bi ≺ c (and hence dim(bi) =
1 + dim(a) ) for all i ∈ {1, 2, 3}.

Proof. If n = 2 or dim(a) = −1 or dim(c) = n this reduces to the
previous axiom. So suppose n > 2 and dim a = k > −1, see figure 2.9.
By axiom 2.8.1 there is a point p ≺ c, p 6� a. By axiom 2.8.2 b1 = a ∨ p
has dimension k + 1. Again there is a point q ≺ c, q 6� b1. Define
l = p∨ q. This has at least a third point r. Suppose r � a. Then r ≺ b1,
hence l ≺ b1, hence q ≺ b1 †. Define b2 = a ∨ q, b3 = a ∨ r. Equality of
two of the bi again leads to a contradiction. �

Figure 2.10: Perspective lines
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Proposition 2.9.3 All lines contain an equal number of points.

Proof. First suppose the lines a, b have a common point a ∧ b = P , see
figure 2.10. Then by the dimension theorem a ∨ b = α is a plane. We
will first show that there is at least one point Q in α outside a and b.
Take a point C 6= P on a and D 6= P on b. l = C ∨ D is a line which
must have a third point Q on it. If Q is on a (or on b) then a = l (or
b = l). †
Next, for X on a and Y on b, the maps

f : X → (X ∨Q) ∧ b

and
g : Y → (Y ∨Q) ∧ a

are bijections from a to b resp. from b to a and inverse to each other.
If a ∧ b = 0, i.e. they are skew, take a point P on a and Q on b and
let c = PQ = P ∨Q, which is a line. Then we can construct bijections
between a and c and between b and c. �

Corollary 2.9.4 Let a ≺ c and dim(c) = 2 + dim(a). Then the num-
ber of elements b between a and c is the same as the number of points
on a line (all 1-dimensional open intervals have the same number of
elements).�

Corollary 2.9.5 Let be given the elements x and y, both not equal to
1. Then there exists a point that is contained in neither. And, dually, if
x 6= 0 6= y then there is a hyperplane that contains neither.

Proof. We distinguish the following cases. (1) x � y. Since y ≺ 1,
from axiom 2.8.1 follows that there is a point p that is not contained in
y, hence not in x. (2) y ≺ x similar. (3) Otherwise. Now x ∧ y ≺ x
and x ∧ y ≺ y. Since x ≺ 1 there is a point p not in x. If p 6� y then p
satisfies our proposition. If p � y then from axiom 2.8.1 again we know
that there is a point q � x with q 6� x∧y. The line p∨q contains a third
point r. If r � x then this whole line is in x, including p, †. Likewise r
cannot be in y. Hence r satisfies our proposition. �

Corollary 2.9.6 If neither x � y nor y � x then there is a point p ≺
x ∨ y that is neither in x nor in y.

Proof. This follows from the last part of the previous proof. �

At last we can give the definition of a projective space.
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Definition 2.9.7 A projective space is a quadruple (S, n,dim, I) in which
S is a set, n ≥ 3 is an integer, dim : S → {−1, 0 . . . n} is a surjective
function, and I is a binary relation on S, satisfying

• the axiom of order, 2.2.1:

– (x, x) ∈ I
– ( (x, y) ∈ I and (y, x) ∈ I ) ⇒ x = y

– ( (x, y) ∈ I and (y, z) ∈ I ) ⇒ (x, z) ∈ I

• the axiom of monotone dimension, 2.2.7: for every x, y ∈ S we
have:

x ≺ y ⇒ dim(x) < dim(y)

• 2.3.1 the axiom of border:

– there is an element 0 such that for every x ∈ S : 0 � x;
– there is an element 1 such that for every x ∈ S : 1 � x

• 2.4.3, the Lattice axiom:

– each pair of elements of S has a least upper bound
– each pair of elements of S has a greatest lower bound

• 2.8.1 the axiom of sufficient points/hyperplanes:

– for every pair a, b of elements of S for which a ≺ b, there
exists a point x such that x 6� a and x � b

– for every pair a, b of elements of S for which a ≺ b, there
exists a hyperplane y such that a � y and b 6� y

• 2.8.2 the axiom of composition

– if x is a point and a any element not containing x, then
dim(a ∨ x) = dim(a) + 1

– if y is a hyperplane and b any element not in y, then dim(b∧
y) = dim(b)− 1

• 2.9.1 the axiom of cardinality:

– every line has at least three points on it
– every dual line is contained in at least three hyperplanes

In addition, 1- and 2-dimensional intervals of higher dimensional pro-
jective spaces, are called projective spaces as well3.

3 We deliberately exclude 0-dimensional spaces. Such a space would be for instance
[P, l], where P is a point on line l. It contains two elements. An interval [x, x],
with only one element would get dimension −1. Anyhow, they have no practical
geometrical value.
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Note 1. If one wants to develop ordinary real projective geometry, one
more axiom is required: explicit statement that the ground field is R
(see section 4.9). That implies the axiom of cardinality, however.

Note 2. Our axioms are certainly not independent. The desire to for-
mulate them symmetrically to ensure duality, prevents this. That they
are not contradictory follows from example 1 on page 28. We leave it to
the logicians to find minimal subsets of independent axioms.

As a first and very important result we formulate the theorem of

Proposition 2.9.8 Desargues
Let be given two triangles consisting of six different points A,B,C,A′, B′, C ′

and six different lines a = BC, b = CA, c = AB, a′ = B′C ′, b′ =
C ′A′, c′ = A′B′. Then

dim(AA′ ∧BB′ ∧ CC ′) = 0

if and only if
dim((a ∧ a′) ∨ (b ∧ b′) ∨ (c ∧ c′)) = 1

Note that if either condition is met, the whole configuration is contained
in a 2- or 3-dimensional blade, see figure 2.11. Hence, for a proof we can
refer to any elementary book on projective geometry.

We say that the triangles are perspective from a point (viz. O) if and
only if they are perspective from a line (viz. l).

Exercise. Formulate the dual of the Desargues statement. �

Figure 2.11: Desargues’ theorem

We will now redefine the concept of subspace in a more natural way, but
- of course - it will fully agree with definition 2.6.6.
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Definition 2.9.9 Let (S, n,dim, I) and (S′, n′,dim′, I ′) be projective spaces
(of dimension 1 or more). The second is called a subspace of the first if

• S′ ⊆ S

• for every x, y ∈ S′ : (x, y) ∈ I ⇔ (x, y) ∈ I ′

• for every x, z ∈ S′ and for every y ∈ S : x ≺ y ≺ z ⇒ y ∈ S′
(completeness of blades)

Note that I ′ is the restriction of I to S′ × S′.

Proposition 2.9.10 Let (S′, n′,dim′, I ′) be a subspace of (S, n,dim, I).
Then there exists an integer a ≥ 0 with the property that for every x ∈ S′
we have dim′(x) = dim(x)− a.

Proof. Let 0′ be the lower border of S′. Then there is an integer a ≥ 0
and a composition chain

0 = p0 ≺ · · · ≺ pk ≺ · · · ≺ pa = 0′

Also there is a composition chain

0′ = pa ≺′ · · · ≺′ pa+k ≺′ · · · ≺′ pa+m = x

where m = dim′(x) + 1. But the last chain is also a composition chain
in S, so we have the composition chain

0 = p0 ≺ · · · ≺ pk ≺ · · · ≺ pa+m = x

and hence dim(x) = a+m− 1 = a+ dim′(x). �

Corollary 2.9.11 It follows that n′ ≤ n. In addition, the new definition
of subspace is, indeed, in accordance with definition 2.6.6.�

Definition 2.9.12 S′ is a proper subspace of S if it is a subspace and
if it is in addition a proper subset of S or - equivalently - if n′ < n.

Proposition 2.9.13 Let (S, n,dim, I) and (S′, n′,dim′, I ′) be projective
spaces. The following propositions are equivalent:

• S′ is a subspace of S

• there are three elements x ≺ y ≺ z of S such that S′ = [x, z]

• S′ is an interval of S, of dimension 1 or more. �
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We close this section with two examples.

Example 1. The lattice of subspaces of a vector space. Let V be the
(n+1)-dimensional left vector space over a skew field F , with n ≥ 3. Let
Sk be the set of k-dimensional linear subspaces of V and S =

⋃n
k=0 Sk.

Define dim(L) = k − 1 for every L ∈ Sk, then dim is a surjective map
from S to {−1, 0, . . . n}. Clearly, 1-dimensional subspaces are called
‘points’ now, and 2-dimensional ones ‘lines’. Define L � M by L ⊆
M , then this relation satisfies axioms 2.2.1 and 2.2.7. The borders are
{0} and V , satisfying 2.3.1. The meet of two subspaces is simply their
intersection, and the join their direct sum, satisfying 2.4.3. Also the two
remaining axioms hold. The dimension theorem was already a property
of subspaces, but is shown once more. The last axiom, 2.9.1, needs
some reflection. If the characteristic k of the field is 0, there are infinite
points on each line. Otherwise the number of vectors on a 1-dimensional
subspace equals k, so the number of ‘points’ on a ‘line’ is k + 1 > 2.

Nowadays, projective space is usually defined as the quotient of a vector
space V by the relation v ∼ λv, where v ∈ V and λ any non-zero scalar.
But that gives only the points of the projective space. So we have to
extend this definition in the above way, in order to deal with lines etc.
too. �

Figure 2.12: The Fano plane

Example 2. The Fano space. The Fano 3-space is the collection of linear
subspaces of the vector space F4

2, the 4-dimensional space over the finite
field F2. It consists of 15 points, 35 lines and 15 planes. Each plane - in
turn called a Fano plane - contains 7 points and 7 lines, see figure 2.12.
Verify that this plane satisfies the definition of a projective space and try
to compose an image of the space. Concerning the Desargues statement:
no two different triangles satisfy the conditions of the proposition, hence
the statement is trivially true. In fact this means that it is not necessary
to require that the Fano plane can be embedded in a 3-dimensional space.
�
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2.10 3-dimensional geometry

We are now in a position to prove the ‘normal’ axioms and basic theo-
rems of 3-dimensional projective geometry. Doing this is more than just
an example. It will enable us to loosen our language and thus to use
‘everyday’ expressions and facts in the sequel. So, in this section S is a
3-dimensional projective space.

We refer to the axioms of incidence in section 2.1 of [Coxeter]. Coxeter’s
axiom 2.111 and 2.113 follow directly from axiom 2.9.1. His 2.114 and
2.116 are specializations of our 2.8.1.

Proposition 2.10.1 Two distinct points determine one line that con-
tains them.

This is [Coxeter] 2.112. A precise formulation would be: Let Vk be the
set of k-blades, then

∀ P ∈ V0 ∀ Q ∈ V0 \ {P} ∃! l ∈ V1 : P ≺ l & Q ≺ l

The dual statement is [Coxeter] 2.117.

Proof. Let P 6= Q be the points and l = P ∨ Q. Because the points
are different we have P ∧ Q = ∅, hence dim l = dim(P ∨ Q) = dimP +
dimQ− dim ∅ = 0 + 0 + 1 = 1. So l is a line. If m is a line that contains
P and Q, it contains l, hence l = m. �

Proposition 2.10.2 A point and a line not through that point deter-
mine a unique plane. �

Proposition 2.10.3 Two different lines that have one common point
determine a unique plane. �

Proposition 2.10.4 Two different lines that are in one plane have one
point in common. �

Proposition 2.10.5 A plane and a line not in that plane have one point
in common.

Proof. Let α be the plane, l the line and P = l ∧ α. We will show that
dimP = 0. From its definition we know already that dimP ≤ 1. If it
were -1 then dim l∨α = 1 + 2 + 1 = 4, which is impossible in 3-space. If
it were 1 then P = l ≺ α, contradicting the hypothesis. �

Proposition 2.10.6 Let A, B and C be different non-collinear points.
Let D ≺ BC but B 6= D 6= C and E ≺ AC but A 6= E 6= C. Then there
is a point F ≺ AB such that D, E, F are collinear.
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Figure 2.13: Proposition 2.10.6

This is [Coxeter] 2.115.

Proof. Let a = BC = B ∨ C, b = CA, c = AB, l = DE, see figure
2.13. Then α = A∨ a = A∨B ∨C is a plane. Since D and E are also in
α, l ≺ α. If l = c then C ≺ c, †. But then l and c are different lines in
a plane, hence have a common point F . Then F satisfies the conditions
of our proposition. �



Chapter 3

Isomorphisms

The first section of this Chapter we owe again to Jacobson. The remain-
ing part gives a reformulation of the basic concepts of perspectivity and
homology.

3.1 Maps

In this section we deal with more than one space, and the structures of
them are compared. Let S and S′ be projective spaces, each of dimension
2 or more1.

Definition 3.1.1 A map f : S → S′ is called order preserving or mono-
tone if for every a, b ∈ S:

a � b ⇒ f(a) �′ f(b)

Examples. 1. The identity map 1S : S → S is, of course, order
preserving, and so is the constant map fa : S → S′, where a is any
element of S′ and f(x) = a for every x ∈ S.

2. If [a, b] is a subspace of S then the embedding f : [a, b] → S, defined
by f(x) = x, is order preserving too.

3. Now let P be a point on a line l in the ordinary projective plane α.
Let the projection f : [∅, α]→ [∅, l] be defined as follows:

• for x ∈ [∅, l] : f(x) = x

1It is not necessary to require dimension 3 or more since in the 2-dimensional case
we know that these spaces can be embedded in 3-dimensional ones.

31
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• for each point X ≺ α that is not on l : f(X) = P .

• for each line m ≺ α : f(m) = l

• f(α) = l

It is easy to verify that this map is oder preserving. �

Definition 3.1.2 A map f : S → S′ is called a homomorphism if for
every a, b ∈ S:

f(a ∨ b) = f(a) ∨′ f(b)

and
f(a ∧ b) = f(a) ∧′ f(b)

If no confusion is possible we will omit the primes of the symbols �,∧
and ∨.

Proposition 3.1.3 Each homomorphism is order preserving.

Proof. a � b⇒ a∧b = a⇒ f(a)∧f(b) = f(a∧b) = f(a)⇒ f(a) � f(b).
�
The projection map in example 3 above is not a homomorphism. For
take any two different points A and B in α that are not both on l. Then
m = A ∨B is a line. Now f(A ∨B) = f(m) = l whereas f(A) ∨ f(B) =
P ∨ P = P . So the converse of proposition 3.1.3 is not true.

Definition 3.1.4 An isomorphism or projectivity or projective map is
a bijective homomorphism. The spaces S and S′ are called isomorphic
if there exists an isomorphism between them.

Proposition 3.1.5 A map f : S → S′ is an isomorphism if and only if
it is bijective and for every a, b ∈ S:

a � b ⇔ f(a) � f(b)

Proof. If f is an isomorphism then by definition f is a homomorphism
and hence order preserving. If f(a) � f(b) then f(a∧ b) = f(a)∧f(b) =
f(a) so a ∧ b = a and hence a � b. This proves half of the statement.
Conversely let f be bijective and for every a, b ∈ S : a � b ⇔ f(a) �
f(b). Since a∧b � a and a∧b � b, also f(a∧b) � f(a) and f(a∧b) � f(b),
hence f(a∧b) � f(a)∧f(b). Now let x ∈ S′ be a lower bound of f(a) and
f(b), so x � f(a) ∧ f(b), and let y = f inv(x). Clearly y � a, y � b and
y � a∧ b. Then again x � f(a∧ b) which means that f(a∧ b) is greatest
lower bound of f(a) and f(b), hence equal f(a)∧ f(b). Analogous for ∨.
�
Of course the inverse of an isomorphism is again an isomorphism.
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Proposition 3.1.6 Isomorphic spaces have equal dimensions.

Proof. Let f : S → S′ be an isomorphism. Note that a ≺ b ⇔ f(a) ≺
f(b). Let 0 ≺ a0 ≺ . . . ≺ an−1 ≺ 1 be a composition chain. Then
f(0) ≺ f(a0) ≺ . . . ≺ f(an−1) ≺ f(1). That means that the dimension
of S′ is at least equal to that of S. Analogously dimS ≥ dimS′. �
Let G denote the set of automorphisms of a projective space S, that is
the set of isomorphisms of S to itself. Then (G, ◦) is a group.

Important ‘quasi isomorphisms’ are the following (remember that the
dimension of S is at least 2).

Definition 3.1.7 A correlation or contravariant projectivity is a bijec-
tive map f : S → S that reverses order, i.e. for every a, b ∈ S:

a � b ⇔ f(a) � f(b)

By contrast we have:

Definition 3.1.8 A collineation or covariant projectivity is a bijective
map f : S → S that preserves order.

Hence a collineation is just an automorphism.

Correlations can in fact be extended to isomorphisms by composing them
with the ‘identity’ between S and its dual. To be precise, let 1∗S : S → S∗

be defined by 1∗S(x) = x. Obviously 1∗S is order reversing and 1∗S ◦ f is
an isomorphism for each correlation f .

Proposition 3.1.9 If f is a correlation then for every a, b ∈ S:

f(a ∨ b) = f(a) ∧ f(b)

and
f(a ∧ b) = f(a) ∨ f(b). �

The collineations of S form the above group, G. The correlations of S do
not form a group: two correlations obviously compose to a collineation,
or even (without proof), every collineation can be factored into two
correlations. Thus if H is the group of all correlations and collineations,
we have that G is a subgroup of H of index 2.

So far we have avoided 1-dimensional spaces. These require special care,
as the following example will show. Let S be the real projective line,
consisting of one line, its (infinite) points and the empty set. Take any
two different points a, b and let f(a) = b, f(b) = a and f(x) = x in all
other cases, including 0 and 1. This map surely preserves order, join and
meet. But it is not a projective map according to the common definition.
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Definition 3.1.10 Two 1-dimensional spaces S, S′ are isomorphic if
they are contained in 2-dimensional spaces U,U ′ respectively, and if there
exists an isomorphism f : U → U ′ with f(S) = S′. A map g : S → S′ is
an isomorphism if it can be extended to an isomorphism f : U → U ′.

3.2 Perspectivities

Let S be an n-dimensional projective space, n ≥ 2, [a, b] a k-dimensional
subspace, and c ∈ S arbitrary. Hence a ≺ b and 1 ≤ k ≤ n. Consider
the map f : [a, b]→ S defined by f(x) = x ∨ c. The image of [a, b] does
not exceed [a ∨ c, b ∨ c], so we redefine

f : [a, b]→ [a ∨ c, b ∨ c]

This map is obviously order preserving. It is surjective too: for either
a ∨ c = b ∨ c, in which case we deal with a constant, surjective map;
or else there is for every y ∈ 〈a ∨ c, b ∨ c] an integer j > 0 and points
p1, . . . pj such that

a ∨ c ≺ a ∨ c ∨ p1 ≺ · · · ≺ a ∨ c ∨ p1 ∨ · · · ∨ pj = y

is a composition chain. But then f(a ∨ p1 ∨ · · · ∨ pj) = y.

Under what conditions is f injective? If it is injective, an obvious can-
didate for an inverse of f is the map

g : [a ∨ c, b ∨ c]→ [a, b]

defined by g(y) = y ∧ b. This seems to violate duality. But if we put
p = a∨ c and q = b∨ c we have f(x) = x∨ p and g(y) = y ∧ b, see figure
3.1.

Figure 3.1: Dual perspectivities
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Composing the two gives

g ◦ f(x) = (x ∨ c) ∧ b

f ◦ g(y) = (y ∧ b) ∨ c

But there is no guarantee that these equal the identity maps.

Let’s first consider two extreme cases.

• if c = 0 then f(x) = x∨ 0 = x, hence f = 1[a,b] = g is bijective for
all admitted pairs a, b.

• if c = 1 then f(x) = x ∨ 1 = 1, hence f is constant and not
injective, for all admitted a, b.

But it is not so much the position of c as well as that of b ∧ c relative
to a and b that determines whether or not f is injective. We have three
cases (obviously b ∧ c � b):

1 b � (b ∧ c)

2 a ≺ (b ∧ c) ≺ b

3 (b ∧ c) � a

The first case, b � (b ∧ c), implies b � c. We have f(x) = c, a constant
map again, and not injective; c = 1 is a special case.

If, in the second case, a ≺ (b∧ c) ≺ b then a � c hence f(a) = a∨ c = c.
But also f(b ∧ c) = c, so f is not injective.

That leaves the third case. So suppose (b ∧ c) � a. From proposition
2.7.1 we know that

g ◦ f(x) = (x ∨ c) ∧ b � (x ∧ b) ∨ (c ∧ b) =
= x ∨ (c ∧ b) = x

In addition we have
1. a � x hence a ∧ c � x ∧ c � c
2. x � b hence x ∧ c � b ∧ c � a
3. from 1 and 2: x ∧ c � a ∧ c
4. from 1 and 3: a ∧ c = x ∧ c.
By the dimension theorem we have

dim(f(x)) = dim(x) + dim(c)− dim(x ∧ c)
= dim(x) + dim(c)− dim(a ∧ c)
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Next consider g(y) = y ∧ b with y ∈ [a∨ c, b∨ c]. Now we have y � b∨ c
and b � b∨ c hence y ∨ b � b∨ c. Also c � y � y ∨ b and b � y ∨ b hence
b ∨ c � y ∨ b. So also y ∨ b = b ∨ c. Then

dim(g(y)) = dim(y) + dim(b)− dim(y ∨ b)
= dim(y) + dim(b)− dim(b ∨ c)

If we now substitute y = f(x) we get

dim(g(f(x))) = dim(f(x)) + dim(b)− dim(b ∨ c)
= dim(x) + dim(c)− dim(a ∧ c) + dim(b)− dim(b ∨ c)
= dim(x) + dim(b ∧ c)− dim(a ∧ c)
= dim(x)

The last equality holds because - by hypothesis - b∧ c � a. Now we have
both g ◦ f(x) � x and dim(g(f(x))) = dim(x), so g ◦ f(x) = x, indeed.
Since f is surjective and has a left inverse, it is injective as well. Does
this mean that f is an isomorphism? Yes, as long as the dimension of
[a, b] is at least 2. For 1-dimensional intervals we need special care.

Let [a, b] have dimension 1. We know that this interval is in a space S
of dimension 3 or more. Let c ∈ S have the required property b ∧ c � a,
and let f(x) = x∨ c. If b = 1 then c � a hence f is the identity on [a, b],
hence an isomorphism. Next suppose b 6= 1. Then c cannot be 1 either.
In that case there is a point p with p 6� b and p 6� c. Then [a, b ∨ p] has
dimension 2 and (b ∨ p) ∧ c � a. So the map f can be extended to an
isomorphism from [a, b ∨ p] to [a ∨ c, b ∨ p ∨ c].
At last we have proved:

Proposition 3.2.1 The map f is an isomorphism if and only if b∧ c �
a.

Dually we have

Proposition 3.2.2 The map f : [a, b]→ [a ∧ c, b ∧ c] defined by f(x) =
x ∧ c is an isomorphism if and only if a ∨ c � b. �

Exercise. Prove this proposition directly. �

Definition 3.2.3 In this book2 non trivial isomorphisms x 7→ x∧ c and
x 7→ x ∨ c are called perspectivities.

Exercise. Remember that in real projective 3-space there are 6 types of
subspaces: [∅, l], [∅, α], [∅,P3], [A,α], [A,P3], and [l,P3], where we
presume A ≺ l ≺ α. List the 10 types of perspectivities. �

2Normally the word perspectivity is used for bijective maps x 7→ (x ∨ a) ∧ b and
x 7→ (x ∧ a) ∨ b
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We will show that all k-dimensional subspaces of one space are isomor-
phic. But first we restrict to k-blades.

Proposition 3.2.4 For each pair of k-blades a and b in S, there exists
an isomorphism f : [0, a]→ [0, b].

Proof. [1] If a = b we take the identity. If not, c = a ∧ b has dimension
l < k. Let d = a ∨ b, which has dimension 2k − l. [2] By proposition
2.9.5 there is a point r1 ≺ d, neither in a nor in b. Define a1 = a ∨ r1
and b1 = b ∨ r1, both having dimension k + 1. Note that a1 ∨ b1 = d
and dim(a1 ∧ b1) = l + 2. If a1 = d (and hence b1 = d) we go on with
[3], below. If not, there is a point r2 ≺ d, r2 6� a1, r2 6� b1. Define
a2 = a1 ∨ r2, b2 = b1 ∨ r2, which have dimension k + 2. Go on until
- after a finite number of steps - we arrive at d = aj = aj−1 ∨ rj =
a ∨ r1 ∨ · · · ∨ rj = bj . Evidently 2k − l = k + j, so j = k − l. [3] Define
r = r1 ∨ · · · ∨ rj , which has dimension j − 1 = k − l − 1. Then by the
dimension theorem r∧a = r∧b = 0. Define the following perspectivities
(check!):

f1 : [0, a]→ [r, d] by f1(x) = x ∨ r
f2 : [r, d]→ [0, b] by f2(x) = x ∧ b

Then f = f2 ◦ f1 is an isomorphism. �
Dually we have:

Proposition 3.2.5 For each pair of k-blades a and b in S, there exists
an isomorphism f : [a,1]→ [b,1]. �

Exercise. Prove this statement directly. �
At last we arrive at the general result.

Proposition 3.2.6 Two subspaces S1 and S2 of S are isomorphic if and
only if they have equal dimensions.

Proof. Remember that 3.1.6 is half of this proposition, so we only have
to prove that subspaces of equal dimensions are isomorphic. Let [a, b] be
a k-dimensional subspace of S. There is only one subspace, viz. S, of
dimension n, so for k = n there is nothing to prove. Suppose 1 ≤ k < n.
We will prove that [a, b] is isomorphic to a k-dimensional subspace of the
form [c,1] or [0, c]. Since k < n either a � 0 or b ≺ 1 or both. Suppose
first b ≺ 1. Then there is a point p1 6� b and a perspectivity x 7→ x ∨ p1

that lifts our interval. If b ∨ p1 = 1 we are done. If not we can repeat
the process with additional points until at last, after a finite number of
steps we arrive at b ∨ p1 ∨ · · · ∨ pj = 1. Then [a, b] is isomorphic with
[a ∨ p1 ∨ · · · ∨ pj ,1] . The case b = 1, a � 0 is left as an exercise. �
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3.3 Homologies

Figure 3.2: Homology

Let α be any hyperplane of a n-dimensional projective space S. Take
three different points o, a and a′ on one line l and not in α, so l 6� α
(note that we need at least 4 points on l; if there are only three, we can
do the next construction with a = a′, which will give the identity). We
are going to define an elementary projective map f : S → S, called a
homology . First it will be defined for points, and afterwards extended
to all other elements of S. So, take an arbitrary point x 6� l. Define
f(x) = (((x∨ a)∧α)∨ a′)∧ (o∨ x), see figure 3.2, where p = (a∨ x)∧α
and x′ = f(x). Note that the lines l, o ∨ x, p ∨ a and p ∨ a′ are all in
one plane β, that β meets the hyperplane α in a line m and that x′ 6= o.
In addition, if x ≺ α then f(x) = x and if not f(x) 6= x.

For a point x ≺ l we use an intermediate point y, y 6� l, y 6� α, see
figure 3.3. Construct y′ = f(y) as above. Since y 6� α, y′ 6= y. Define
x′ = f(x) = (((x ∨ y) ∧ α) ∨ y′) ∧ l, which, again, is a point. Note that
f(o) = o, f(a) = a′ and f(r) = r, where r = l ∧ α. Note also that it
is not necessary that the line has at least 6 points, as in the figure. It
could have three points, then a = a′ and f is the identity, or four or five
in which cases several points coincide. (Five points is in fact impossible,
but for the moment we cannot yet exclude this.)

Proposition 3.3.1 This definition is independent of the choice of y.

Proof. Take another such point, z, and construct z′ = f(z), see figure
3.4. We have to prove that x′ ≺ (s ∨ z′), or, equivalently, s ≺ (x′ ∨ z′).
Let β = y ∨ l and γ = z ∨ l. In the figure we have β 6= γ, but the
proof of the other case is exactly the same. The triangles ayz and a′y′z′
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Figure 3.3: Homology on l

Figure 3.4: Consistency of homology

are perspective from o, hence from p ∨ r (Desargues, 2.9.8). So, u =
(y∨z)∧(y′∨z′) is a point on p∨r. Next the triangles xyz and x′y′z′ are
perspective from point o, hence from q∨u. That means that s ≺ (x′∨z′).
�
Verify that if g is the map defined as above, but with a and a′ inter-
changed, then g ◦ f = f ◦ g = 1 on the set of points, hence f is bijective
on this set.

Proposition 3.3.2 Collinear points are mapped on collinear points.

Proof. Since α is pointwise invariant, all its subspaces, including its
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Figure 3.5: Collinear points

lines, are invariant. That is, the proposition holds in α. So, let x, y, z
be on line m 6� α. Suppose first that m ∧ l = 0. Then a ∨m is a plane
that meets α in a line n. Again, this configuration is in a 3-dimensional
subspace. The planes n∨a′ and m∨o meet in a line k. By construction,
x′, y′, z′ are on k. All other possibilities are left as an exercise for the
reader. �
So, the f -image of a line is defined as the join of the images of any pair
of its points. Of course we define f(0) = 0. Now f preserves incidence in
each line: for each line l and each point p ≺ l we have f(0) ≺ f(p) ≺ f(l).
Trivially f preserves meet and join.

Suppose we have extended the definition of f to all elements of dimension
< k, and suppose for all these elements x f preserves meet and join on
[0, x]. We will define f on k-blades.

Figure 3.6: The image of k-blades

Let β be a k-blade, γ ≺ β a (k−1)-blade and p ≺ β a point not in γ. Note
that β = γ ∨ p. We define f(β) = f(γ) ∨ f(p). This is a k-blade again.
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We have to show that this definition does not depend on the choice of
γ and p. So, suppose δ ∨ q = β with q a point and dim(δ) = k − 1, see
figure 3.6. Define ε = γ ∧ δ, l = p ∨ q, r = l ∧ γ and s = l ∧ δ. Suppose
first γ 6= δ and p 6= q. Then ε is a (k − 2)-blade, l is a line and r and s
are points. We include the possibilities
- r = s
- p = s
- q = r
- p = s and q = r.
If we write x′ for f(x) etc. throughout, we have β′ 1= p′∨γ′ 2= p′∨r′∨ε′ 2=
l′ ∨ ε′ 2= q′ ∨ s′ ∨ ε′ 2= q′ ∨ δ′.
1 is by definition and 2 by hypothesis.
The reader is invited to check the other configurations (p = q or γ = δ).
If β = 1 there is - of course - but one possibility: f(1) = 1.

Thus, we extended f to S. In the same way we can extend its ‘inverse’
g and obviously we have gf = fg = 1S . That is, they are isomorphisms.

Definition 3.3.3 A homology is an automorphism that leaves a hyper-
plane and a point not in that hyperplane invariant.

We summarize the results in:

Proposition 3.3.4 A homology f is completely determined by its in-
variant point o and hyperplane α, and one additional pair x, f(x), pro-
vided that o 6� x 6� α, o 6� f(x) 6� α, dimx = dim f(x), o ∨ x = o ∨ f(x)
and α∧x = α∧f(x). If there are only three points on each line, there is
only one homology, viz. the identity. If there are k points on each line
then there are k − 2 homologies for each pair of fixed elements. �

Figure 3.7: Elation

In the beginning of this section we required that o is not in α. If o is
in α we can do a similar construction, see figure 3.7. In that case f is
called an elation. We leave the details as an exercise for the reader.
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The homologies do not form a subgroup of the automorphisms, nor do
the elations, as is easy to check. However, the homologies (elations) that
keep o and α fixed do.

Let us look at the group G of homologies that fix o and α. The map
that moves a to a′ is denoted by fa,a′ . This makes sense only if a, a′, o
are collinear. For each a 6� α, a 6= o we have fa,a = 1S . What does it
mean when fa,a′ = fb,b′? We will show

Figure 3.8: Equivalence of pairs

Proposition 3.3.5 Let be given four distinct points, not in α and none
equal to o. Suppose o, a, a′ are on a line l and o, b, b′ on a line m. Then

fa,a′ = fb,b′ ⇔ fa,a′(b) = b′ ⇔ fb,b′(a) = a′

Proof. It is trivial that from fa,a′ = fb,b′ follows fa,a′(b) = b′ and
fb,b′(a) = a′. Conversely, suppose fa,a′(b) = b′. We have to show
fa,a′(x) = fb,b′(x) for every x. Suppose first l 6= m. Let n = o ∨ x, p =
l ∧α, q = m∧α, r = n∧α, β = p∨ q ∨ r, see figure 3.8. By hypothesis
we have that a∨b and a′∨b′ meet in a point u on p∨q. Let γ = x∨a∨b.
Then γ meets β in a line k. This line contains u. Also it meets p ∨ r in
a point s and q ∨ r in a point t. The plane k ∨ a′ meets n in a point x′.
Now, by construction, we have fa,a′(x) = fb,b′(x) = x′. The case l = m
is left as an exercise. �

Corollary 3.3.6 If the homologies h1 and h2 both leave o and α invari-
ant, and if there is a point x 6= o not in α such that h1(x) = h2(x) then
h1 = h2. �

In the construction of the skew field of scalars we will need the following.
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Proposition 3.3.7 Given four different points a, a′, b, b′ collinear with
o, and such that b′ = haa′(b) then

ha′b′ = haa′ ◦ hab ◦ ha′a

Proof. Note that none of the points can be in α nor equal to o. haa′ ◦
hab ◦ ha′a(a′) = haa′ ◦ hab(a) = haa′(b) = b′ = ha′b′(a′). So, by corollary
3.3.6 the two homologies ha′b′ and haa′ ◦ hab ◦ ha′a are equal. �
The homologies hab and ha′b′ are called conjugate.
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Chapter 4

The Vector Space

Now we have the tools to show that our space (S, n,dim, I) is isomorphic
to the lattice of subspaces of a vector space over some skew field.

We know that each line has at least three points. If they are really that
small, we can construct a vector space directly. This will be done in
section 4.7. So for the moment we will assume that each line has at least
four points. In addition we assume that the dimension of our space is at
least 2.

Choose an arbitrary point o and an arbitrary hyperplane ∞ 6� o - the
hyperplane at infinity - so dim(o) = 0, dim(∞) = n− 1.

A vector is a point not in ∞, and a co-vector is a hyperplane not con-
taining o. The set of vectors resp. co-vectors is denoted by V resp.
V ∗.

In this chapter we will abbreviate the join of the points x and y to xy.

4.1 Parallel

As soon as we have singled out our hyperplane∞ we can define ‘parallel’
lines. Let Lf = {x ∈ S|x 6� ∞, dim(x) = 1} be the collection of ‘finite
lines’, that is: lines not contained in ∞.

Definition 4.1.1 Two lines a, b ∈ Lf are parallel, notation a//b, if
either

• a = b or

• 0 ≺ a ∧ b ≺ ∞, that is, if they meet in a point at infinity.

45
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It is straightforward to prove that this is an equivalence relation on Lf .
To each point at infinity p belongs exactly one equivalence class Lp,
consisting of the finite lines that contain p.

In general, two lines either coincide, or share a point, or are skew (i.e.
their meet is 0). For finite lines we have: two lines are either parallel
(coincident or not), or share a finite point, or are skew.

Definition 4.1.2 Let be given four distinct vectors a, b, c, d, not on one
line, but in one plane α. Let ab//cd and ad//bc. Then this configuration
of four points and four lines is called the parallelogram abcd.

Note that no three points can be collinear. Note also that the parallelo-
grams abcd, bcda, etc. (8 names) are all equal.

Subsequently one could define a vector - roughly - as an equivalence class
of opposite, directed parallelogram-sides. In that case it is not necessary
to single out the point o. But since we want to develop our geometry
symmetrically (for duality), we have o and ∞ at our disposal, so there
is no need for parallelism yet. However, in the development of scalar
multiplication (4.3) parallelism will turn out to be useful.

4.2 Addition

We are going to define addition of vectors. The procedure for co-vectors
is, of course, exactly dual. This is worked out in my article Vector spaces
and projective geometry (available from www.mathart.nl).

Figure 4.1: The sum of two vectors

Let o, a, b be non-collinear vectors, so a 6� ∞, b 6� ∞. By the dimension
theorem l = oa is a line and α = b∨ l is a plane. Let m = ob, p = l ∧∞
and q = m ∧ ∞, see figure 4.1. Then m is a line and p and q are
points. Now pb and qa are different lines in α, hence (dimension theorem)
meet in a point c. Suppose c ≺ ∞, then qa ≺ ∞ and pb ≺ ∞ hence
a ≺ ∞, b ≺ ∞, †. We define the vector c = a + b := (((o ∨ a) ∧∞) ∨
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b) ∧ (((o ∨ b) ∧∞) ∨ a). In fact, oc is the diagonal of the parallelogram
oacb. Because ∧ is commutative we immediately have a + b = b + a, in
this case.

Figure 4.2: The sum of collinear vectors

If o, a, b are on one line l we proceed as follows, see figure 4.21. Let
p = l ∧∞. Because of axiom 2.8.1 there is a point q ≺ ∞, q 6= p. Let
α = l ∨ q, this is a plane. Let ∞1 = α ∧ ∞ = pq. There is (corollary
2.9.4) at least one line m in α through p and different from l and ∞1.
Connect q with o, b to get two (not necessarily different) lines, and let
the meeting points of these lines with m be o′, b′ resp. Let r =∞1∧(o′a)
and c = l ∧ (b′r). Then we define a+ b := c.

Proposition 4.2.1 This definition is independent of the choice of q and
m.

Proof. Repeat the construction with n, s in the pane β = l∨s, see again
figure 4.2. Suppose first that α 6= β. Note that the whole configuration
(exept of course∞ if the dimension is 4 or more) is in one 3-dimensional
subspace, hence two different planes meet in a line, three in a point. The
triangles oo′o′′ and bb′b′′ are perspective from p hence, by Desargues’
theorem, from the line qs. Then o′o′′, b′b′′ and qs meet in a point u.
The triangles oqs and art are perspective from p hence from a line, which
means that u ≺ tr. Now the triangles art and pb′b′′ are perspective from
a line, hence from c, which means c ≺ tb′′.
If α = β then p, q, r, s, t, u are all on one line∞1. The proof, however,
is identical. �

Verify that this proof holds in the case a = b. Prove also that a + o =
o+ a = a, that is, o is the zero vector .

1As in section 3.3 you should not infer from the figure that we need five points
on the line: it is possible that a = b or that c equals one of the other vectors of l; of
course c 6= p.



48 CHAPTER 4. THE VECTOR SPACE

Figure 4.3: The opposite of a vector

The opposite −a of a vector a is defined as in figure 4.3. Again you can
prove that this is independent of the choice of m and q. In addition we
have - trivially - that −a+ a = o.

Figure 4.4: Associativity of addition

Proposition 4.2.2 Addition of vectors is associative.

Proof. First construct d = a+ b in the plane α and e = b+ c in β, see
figure 4.4. Suppose β 6= α. Let f = d + c, that is f = ds ∧ cr. The
triangles qdr and esc are perspective from ob, hence from f , hence f is
on eq. Next, the triangles est and qda are perspective from op, hence
from f : that is f ≺ at. So, f also equals a+ e.
If α = β then p, q, r, s and t are on one line but the proof is identical.
The other cases (2 or 3 vectors collinear with o) are left as exercises. �

Proposition 4.2.3 The pair (V,+) is an abelian group. �

Note that each line through o determines a subgroup, and even: if W is
a blade through o then its vectors form a subgroup.
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4.3 Scalar multiplication

In the proofs of this section we will restrict to the general cases. The
reader is invited to check all other possibilities.

Fix a second vector e 6= o, called the unit vector . Let k be the set of
vectors on oe and remember that k is a subgroup of V . (By abuse of
notation we will also denote by k the line oe.) For each a ∈ k we will
define a ‘scalar’ fa. As long as a 6= 0, this scalar is, in fact, the homology

fa = hea : S → S

defined by the fixed elements o and ∞ and fa(e) = a, see section 3.3.
Since we are dealing with vectors only (and not with lines, planes etc.)
we will denote the restriction of fa to V also by fa:

fa : V → V

Figure 4.5: Multiplication

For x 6∈ k we have fa(x) = ox ∧ (a ∨ (ex ∧ ∞)), see figure 4.5, where
y = fa(x).

For x on k we have fa(x) = a′r ∧ k, where e′ is any vector not in k,
a′ = fa(e′) and r = (e′x) ∧∞, see figure 4.62, where y = fa(x). This is
independent of the choice of e′ by proposition 3.3.1. As a special case
we have fa(e) = a.

Now consider the case a = o. Obviously the above construction can be
done, but it will result in fo(x) = o for all x ∈ V . Of course fo is not a
homology.

Proposition 4.3.1 For all x ∈ V we have

- fe(x) = x , that is: fe = 1V , the identity on V ,

2Again, if there are less than 6 points on each line several points must coincide,
but even then fa is well-defined.
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Figure 4.6: Multiplication on k

- fo(x) = o �

Furthermore: for each blade W through o and each a ∈ k, a 6= o, we
have fa(W ) = W .

A useful proposition is the following.

Figure 4.7: Parallel image

Proposition 4.3.2 For x 6= x′, both not on k, a ∈ k, a 6= 0 and y =
fa(x), y′ = fa(x′) we have yy′//xx′. Moreover, the vectors o, x, y, x′

and y′ are in one plane.

Proof. Let α = x ∨ k and β = x′ ∨ k, see figure 4.7. Suppose α 6= β.
The triangles exx′ and ayy′ are perspective from o, hence from pq. So
u = xx′ ∧ yy′ is on pq ≺ ∞. If α = β then p, q, r, s and t are on one
line, but the proof is identical. �
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Figure 4.8: Inverse of a scalar

Proposition 4.3.3 If a 6= o the map fa is an isomorphism. Moreover,
there is a unique b ∈ k such that fb ◦ fa = 1V .

Proof. Since a 6= o our map is a homology, hence an automorphism.
Take any line m 6= k through o and any point p in∞∧(k∨m), but neither
on k nor on m, see figure 4.8. Define x = ep∧m, x′ = ap∧m, q = ex′∧∞
and b = qx ∧ k. Then b is again independent of the choice of m and p,
and fb is the inverse of fa. Suppose there is a point c on k with fc = fb.
Then we have c = fc(e) = fb(e) = b, that is, b is uniquely determined
by a. �

Note that we have fb(a) = fa(b) = e in the above proof.

Figure 4.9: Distributivity

Proposition 4.3.4 Scalar multiplication distributes over vector sums:
fa(x+ y) = fa(x) + fa(y).
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Proof. In figure 4.9 we have two arbitrary vectors x and y. The lines
ox and oy meet ∞ in p, q respectively. First construct x′ = fa(x) and
y′ = fa(y). In the plane oxy we construct z = x+y and z′ = fa(z). From
proposition 4.3.2 we know that x′z′//xz and y′z′//yz. Hence x′z′//oy′

and y′z′//ox′, which means z′ = x′ + y′. �

Figure 4.10: Distributivity 2

Proposition 4.3.5 fa(x) + fb(x) = fa+b(x)

Proof. Let y = fa(x), z = fb(x), c = a+b, u = y+z, see figure 4.10. We
have to prove that u = fc(x). Note that the lines ex, ay, bz are parallel,
hence share a point p ≺ ∞. Let q = ox∧∞, r = oe∧∞. Now project y, z
from r on op to get the vectors y−a, z−b resp. Because these vectors are
collinear with o, so is their sum (y−a)+(z−b) = (y+z)−(a+b) = u−c.
But (u − c) + c = u hence cu//op//ex which means u = fc(x). �This
proof we owe to P. Samuel, see [Samuel] p. 29.

4.4 The skew field of scalars

In the set of scalars, F = {fa|a ∈ k}, we define

• addition by (fa + fb)(x) = fa(x) + fb(x) and

• multiplication by fafb = fa ◦ fb, composition of maps.

We will show that this makes F a skew field, with 0 = fo, 1 = fe 6= 0.

Proposition 4.4.1 F is closed under addition.
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Proof. By 4.3.5 we have (fa + fb)(x) = fa(x) + fb(x) = fa+b(x), hence
fa + fb = fa+b �

Proposition 4.4.2 (F,+) is an additive abelian group. �

In fact it is isomorphic to the additive group k. In particular, addition
of scalars is commutative and associative, fo is the zero-element and
f−a = −fa is the opposite of fa.

Figure 4.11: Product of scalars

Proposition 4.4.3 F is closed under multiplication.

Proof. We have to show that for every a, b ∈ k there is a c ∈ k such
that fb ◦ fa = fc. First, define x′ = fa(x) and x′′ = fb(x′), see figure
4.11. Next define c = k ∧ x′′r. As before, one can show that this is
independent of x, and that for each y we have fafb(y) = fc(y). �
Note that c = fb(a) in the above proof.

Proposition 4.4.4 Multiplication in F is associative.

Proof. This is a property of map-composition in general. �
We also have fofa(x) = o, fafo(x) = fa(o) = o for all x, that is 0fa =
fa0 = 0. Proposition 4.3.3 above stated that if a 6= o, that is if fa 6= 0,
fa has an inverse in F . So we have

Proposition 4.4.5 The non-zero scalars form a group too. �

In particular, fe is the unit-element.

Proposition 4.4.6 fa(fb + fc) = fafb + fafc
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Proof. Using 4.3.4 we have fa(fb + fc)(x) = fa(fb(x) + fc(x)) =
fafb(x) + fafc(x) �

Proposition 4.4.7 (fa + fb)fc = fafc + fbfc

Proof. (fa + fb)fc(x) = fafc(x) + fbfc(x) = fp(x) + fq(x) = (fp +
fq)(x) = (fafc + fbfc)(x) �
So we found

Proposition 4.4.8 F is a skew field. �

In addition we have

Proposition 4.4.9 V is an n-dimensional (left) vector space over F .

Proof. Veryfy that, indeed, V satisfies the definition of a (left) vector
space over F . We will show that its dimension is n. Put e1 = e. Then
V1 := Fe = k, a 1-dimensional subspace. So there is an e2 ∈ V \ V1 and
we define k2 = e2 ∨ k and V2 is the set of vectors in k2. By induction
we take ej+1 6∈ Vj and we define kj+1 = ej ∨ kj and Vj+1 is the set of
vectors in kj+1. After a finite number of steps this comes to an end,
namely as soon as kj = 1, and then we have the composition chain
0 ≺ o ≺ k1 ≺ · · · ≺ kj = 1. Hence we have j = n, so V has a basis {ei}.
�
Now this entire construction of skew field and vector space can be dual-
ized, but this will - of course - give the same set of scalars.

Proposition 4.4.10 V ∗ is an n-dimensional (left) vector space over F .
�

4.5 Uniqueness of the skew field

In constructing the skew field we have chosen two points and a hy-
perplane. Do these choices affect the skew field? We will answer this
question in several steps.

First, we choose a different ‘unity’, viz. e′ ∈ k instead of e, which will
give us a skew field F ′. Note that the elements of both skew fields belong
to the group of homologies that leave o and∞ invariant. We will denote
our scalars as homologies now, those of F by fex and those of F ′ by fe′x.

Obviously there is a bijection h : F → F ′ defined by h(fea) = fe′a′ with
a′ = fee′(a). We will prove that h is an isomorphism of skew fields, that
is, h(f + g) = h(f) + h(g) and h(fg) = h(f)h(g) for all f, g ∈ F .
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The first relation is straightforward: h(fea) + h(feb) = fe′a′ + fe′b′ =
fe′,a′+b′ = fe′,(a+b)′ = h(fe,a+b) = h(fea + feb), where we used a′ + b′ =
fee′(a) + fee′(b) = fee′(a + b) = (a + b)′. The second relation certainly
holds if one of the factors vanishes. So suppose a 6= 0 6= b. Now put
fec = feb ◦ fea with c = feb(a); fe′c′ = h(fec), so c′ = fee′(c); and fe′d′ =
fe′b′ ◦ fe′a′ with d′ = fe′b′(a′). Then we have to prove that fe′c′ = fe′d′

or equivalently c′ = d′. Or, after substituting fee′feb(a) = fe′b′(fee′(a)).
But from proposition 3.3.7 we know

fe′b′ = fee′ ◦ feb ◦ fe′e

or
fe′b′ ◦ fee′ = fee′ ◦ feb

which completes the proof of

Proposition 4.5.1 Any other unit ( 6= o) gives an isomorphic skew field.
�

Now suppose that we have two different origins o and o′, but one hyper-
plane ∞. Suppose also that the lines k and k′ meet in a point p ≺ ∞.
Take any point z 6� ∞ on the line oo′. Then there is a homology that
leaves z and∞ invariant and which maps o onto o′ and k onto k′, so the
constructed skew fields c.q. vector spaces must be isomorphic too (by
the previous proposition it is not necessary that this homology maps one
unity onto the other).

If we have one origin and one hyperplane ∞ but different lines k, k′,
meeting ∞ in p, p′ resp. then we take a point z on pp′ and a plane α
through o but not containing any of the lines k, k′. Now the homology
with invariants z and α that maps p onto p′ gives an isomorphism of the
skew fields constructed with k and k′.

Combining the previous two, we find that as long as there is one fixed
hyperplane ∞, all constructed skew fields are isomorphic.

But if we have two different ‘hyperplanes at infinity’ and one origin we
can dualize the whole story, and get an isomorphic skew field once more.

If we have two different origins and two different hyperplanes at infinity,
we can find two homologies. The first maps the first origin on the second,
leaving one hyperplane at infinity invariant, the second leaves the second
origin invariant and maps one hyperplane at infinity onto the other.

Proposition 4.5.2 For each projective space there is - up to isomor-
phism - a unique skew field F such that if one hyperplane (resp. one
point) is singled out, the remaining set of points (resp. hyperplanes) is
an n-dimensional (left-) vector space over F . �
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4.6 Pappos’ proposition

It is a very remarkable fact that multiplication of scalars is commuta-
tive if and only the Pappos proposition holds. This links algebra and
geometry on a very deep level.

Figure 4.12: Pappos’ theorem

Proposition 4.6.1 of Pappos. For any two distinct coplanar lines p1

and p2 and any six distinct points, a1, b1, c1 on p1, and a2, b2, c2 on p2,
the points a3 = (b1 ∨ c2) ∧ (b2 ∨ c1), b3 = (c1 ∨ a2) ∧ (c2 ∨ a1) and
c3 = (a1 ∨ b2) ∧ (a2 ∨ b1) are collinear, see figure 4.12.

So, this proposition only holds if the skew field is commutative, that is,
if it is a field:

Proposition 4.6.2 Multiplication is commutative if and only if the Pap-
pos proposition holds.

Proof. Suppose first that the Pappos proposition is true. We have
to prove that multiplication is commutative. We already know that
0fa = fa0 and 1fa = fa1. So let a, b ∈ k, both different from 0, 1 and
from each other, see figure 4.13. Let x 6∈ V \ k be arbitrary and define
y = fa(x), z = fb(x) and v = ar ∧ bq. Note that the configuration is in
a plane x ∨ k, and that the meet of this plane with ∞ is a line l. Now,
on k we have the points e, a, b in that order, and on l we have p, q, r.
Connecting these points gives v = ar ∧ bq, eq ∧ ap = y = fa(x) and
er ∧ bp = z = fb(x). Then we have

v ≺ yz ⇔ v = fbfa(x) = fafb(x) (4.1)

But by hypothesis we have v ≺ yz, hence fbfa(x) = fafb(x).
Conversely, suppose multiplication is commutative. Take any pair of
distinct lines p1 and p2 and any six distinct points, a1, b1, c1 on p1, and
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Figure 4.13: Commutativity of multiplication

a2, b2, c2 on p2. We want to show that the points a3, b3 and c3 as defined
in the proposition, are collinear. If one of the six points is the meeting
point of p1 and p2 we are done, for then two of the three a3, b3, c3
coincide.
If p1 and p2 do meet, but not in one of the six, we proceed as follows. Take
any hyperplane ∞ � p2 but not containing p1. Rename our elements to
get figure 4.13: p = a2, q = b2, r = c2, k = p1, c = a1, a = b1, b = c1.
Then a3 = v, b3 = z and c3 = y. Define o = yz ∧ k. Construct the skew
field as before. By hypothesis this skew field is commutative. Hence, by
4.1, v is on yz. �
Note: from algebra we know that any finite skew field is commutative,
hence, Pappos’ theorem holds in finite projective spaces. A geometric
proof of this last statement was given by Helga Tecklenburg, see [Teck-
lenburg].

4.7 Small spaces

We now investigate the case that each line has only three points.

From theorem 2.9.4 we know that all flat pencils have three lines. Now
take any plane α and any line l in it and any point p ≺ α not on l. Then
through p in α we find exactly three lines, meeting l in its three points.
By joining points and intersecting lines we can construct at least seven
points p1 . . . p7 and seven lines l1 . . . l7 in α, thus getting a Fano plane
inside α. Suppose there is an eighth point q in α. Connect it to any of
the seven points by a line m. Then it is immediate that this line must
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contain another of the pi, hence coincide with one of the seven lines lj .
And hence q must be one of the seven points pi. So each plane is a Fano
plane. Now take any point o and any hyperplane ∞. Take any plane
α through o. This meets ∞ in a line a. The finite points of α are now
in 1-1-correspondence with F2

2. If S is more than 2-dimensional, we can
take an arbitrary finite point p1 outside α and the finite points of p1 ∨α
form a 3-dimensional vector space over F2. We can repeat this, adding
points pj , until α ∨ p1 ∨ · · · ∨ pj = 1.

4.8 The lattice of subspaces

As a last step we will show that each projective space is isomorphic to
the lattice of subspaces of a vector space.

So let S be an n-dimensional projective space, with a particular point o
and hyperplane ∞. As before we construct a skew field F and a vector
space V over F . This vector space has dimension n, and it is isomorphic
to Fn. Take any basis {e0, . . . , en−1} for V and express every point of
V as a set of coordinates with respect to this basis. Embed V in Fn+1

by (x0, . . . , xn−1) 7→ (x0, . . . , xn−1, 1). Let L be the collection of linear
subspaces of Fn Define the map i : S → L by

• i(0) = {0}

• i(x0, . . . , xn−1) = F×(x0, . . . , xn−1, 1) for all vectors (x0, . . . , xn−1)

• if p is a point at infinity, take any vector (x0, . . . , xn−1) on op and
define i(p) = F × (x0, . . . , xn−1, 0)

• for any other k-blade L = p0 ∨ · · · ∨ pk define i(L) = i(p0)⊕ · · · ⊕
i(pk).

It is straightforward to prove that i is an isomorphism, the details are
left as an exercise for the reader. Thus we have

Proposition 4.8.1 Every n-dimensional projective space is isomorphic
to the lattice of linear subspaces of an (n+ 1)-dimensional vector space.
�

4.9 Real geometry

So far we have not required that our intuitive lines (see 1.4) should have
infinitely many points, so the skew field could be finite of order pn with
p prime and pn some very large number. But if that were the case,
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separation of points on a line (see [Coxeter] Chapter II) would not be a
projective invariant. Let be given four points A,B,C,D on a line l, see
figure 4.14.

Figure 4.14: separation of points

We say that the points A and C separate the points B and D, which
we can denote by AC||BD. If we permute the letters we get 12 true
and 12 false statements. A projective map may permute the points,
but it should respect separation. However, if the (skew) field is finite,
separation is not invariant (see [Segre] section 121). So, it is only natural
to require

• that scalar multiplication is commutative to guarantee that Pap-
pos’ proposition holds, and

• that the characteristic of the field is 0, which implies that each line
has infinitely many points.

At the same time it is impossible that the field would be C, since the
complex numbers are not linearly ordered. In fact, due to considerations
about metrics, viz. distances like

√
2 and π, it makes only sense to do

‘real’ geometry with the real numbers.

So, we now explicitly state that the field is R, thus replacing the axiom
of cardinality, 2.9.1, including the dual one.

Axiom 4.9.1 of reality
The skew field of scalars is R.

Corollary 4.9.2 Every ‘real’ projective space of dimension n is isomor-
phic to the lattice of linear subspaces of Rn+1. �

Corollary 4.9.3 In these spaces the proposition of Pappos, 4.6.1, holds.
�
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List of Symbols

symbol page meaning

† 6 contradiction
� 6 end of exercise, example, proof; or trivial proof omitted
◦ 6 composition of maps
∧ 13 meet
∨ 13 join
� 9 lies in
� 9 contains
≺ 10 lies in, but unequal
� 10 contains, but unequal
S∗ 15 the dual of S
[a, b] 15 interval
↑ 12 lies in (in a figure)
‖ 45 parallel
0 11 minimal element of a projective space
1 11 maximal element of a projective space
codim 8 co-dimension
dim 7 dimension
C 6 the field of complex numbers
Fp 6 the field with p elements, p prime
Pn 11 n-dimensional projective space
Q 6 the field of rational numbers
R 6 the field of real numbers
Z 6 the ring of integers
xy 45 the join of the points x and y, in Chapter 4.
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Index

0-dimensional spaces, 8, 25

addition
closed, 53
of (co-) vectors, 46
of scalars, 53

Aigner, 4, 22
associative

addition of scalars, 53
addition of vectors, 48
meet, join, 13
multiplication of scalars, 53

automorphism, 33
axiom

intuitive, 5
lattice, 13
of border, 11
of cardinality, 23, 59
of composition, 19
of monotone dimension, 10
of order, 9
of reality, 59
of sufficient points, 18
system, 2, 4, 25, 29

be (lie) in, 9
blade, 8

completeness, 27
isomorphic, 37

border, 11
bundle, 15

cardinality, 23, 59
of 1-dim intervals, 23

chain, 19
(ir-) redundant, 19
complete, 19

composition, 19
length, 19

co-dimension, 8
co-vector, 45
collineation, 33
commutative

addition of scalars, 53
addition of vectors, 47
meet, join, 13
multiplication of scalars, 56

completeness of blade, 27
complex

linear, 8
numbers, 59

composition chain, 19
conjugate, 43
connected by chain, 19
contain, 9
contravariant, 33
correlation, 33
covariant, 33
Coxeter, 1, 4, 5, 29, 59

Dedekind, 17
deductive system, 1, 2
Desargues, 3, 8, 26, 28, 39, 47
dimension

dimension theorem, 22, 28
monotone, 10
of blade, 8
of element, 7
of interval, 16
of space, 3, 8

distributive
join, meet, 16
multiplication over addition, 51
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dual, 4, 8, 14, 33, 54

elation, 41
element, 3, 7

biggest, 5, 11
smallest, 5, 11

elliptic geometry, 4
embedding, 31
empty set, 11
Euclid, 1, 2, 4

Fano, 28, 57, 58
field, 6

finite, 57
of scalars, 45, 52, 54
skew, 6
unique, 55

finite lines, 45

geometry, 1
real projective, 26
elliptic, 1, 4
Euclidean, 4
fundamentals, 2, 4
hyperbolic, 1, 4
parabolic, 4
projective, 4

greatest lower bound, 12

homology, 38, 49
conjugate, 43
invariant hyperplane, 41
invariant point, 41

homomorphism, 32
hyperbolic geometry, 4
hyperplane, 9
hyperplane at infinity, 45

idempotent, 14
incidence, 4
infinity

hyperplane at, 45
point at, 45

interval, 5, 15
1-dim, 23, 25
2-dim, 25

inverse
of isomorphism, 32
of scalar, 51, 53

isomorphic spaces, 32
isomorphism, 32

Jacobson, 1, 7, 31
join, 5, 12

lattice, 13
axiom, 13
Dedekind, 17
modular, 17, 22
of subspaces, 28, 45, 58
theory, 5

least upper bound, 12
lie in, 9
line, 8

as border, 3
finite, 45

linear complex, 8
linear ordering, 10
lower bound, 12

manifold, 8
map

projective, 32
meet, 5, 12
modular lattice, 17
monotone

dimension, 10
map, 31
meet, join, 14
strict, 10

multiplication
closed, 53
of scalars, 53
of vector by scalar, 49

numbers
complex, 59
real, 59

opposite
of scalar, 53
of vector, 48
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order, 9
order preserving, 31, 33
order reversing, 33
ordering

linear, 10
partial, 9

Pappos, 56, 57, 59
parabolic geometry, 4
parallel, 45
parallelogram, 46
partially ordered, 9
pencil

of lines, 15
of planes, 15

perspective triangles, 26
perspectivity, 36
plane, 8

as border, 3
projective, 15

point, 3, 8
point at infinity, 45
preserving order, 33
projection, 31, 32
projective geometry, 4
projective map, 32
projective space, 28

3-dim, 29
definition, 25

projectivity, 32
contravariant, 33
covariant, 33

proper subspace, 27

range of points, 15
rank, 8
real

numbers, 59
space, 59

reversing order, 33
Reye, 4

Samuel, 4, 8, 52
scalar, 49

field, 52

scalar multiplication, 49
preserves parallelism, 50

Segre, 59
separation, 59
skew field, 6
space, 2, 7

0-dim, 8, 25
1-dim, 16, 33, 36
2-dim, 16
abstract, 2
dimension of, 3
finite, 57
geometrical, 2
isormophic, 32
physical, 1, 2
projective, 25, 28
small, 45, 57
vector, 45

Stoss, 5
subspace, 16, 26

isomorphic, 37
of vector space, 45
proper, 27

Tecklenburg, 57

uncomparable, 10
undefined concepts, 2
unit

scalar, 52, 53
vector, 49

upper bound, 12

vector, 45
vector space, 6, 45

left, 6

zero
scalar, 52, 53
vector, 47


